Triggering High Capacity and Superior Reversibility of Manganese Oxides Cathode Via Magnesium Modulation for Zn//MnO2 Batteries.

SMALL(2023)

引用 18|浏览11
摘要
Aqueous zinc-ion batteries (ZIBs) have attracted extensive attention in recent years because of its high volumetric energy density, the abundance of zinc resources, and safety. However, ZIBs still suffer from poor reversibility and sluggish kinetics derived from the unstable cathodic structure and the strong electrostatic interactions between bivalent Zn2+ and cathodes. Herein, magnesium doping into layered manganese dioxide (Mg-MnO2 ) via a simple hydrothermal method as cathode materials for ZIBs is proposed. The interconnected nanoflakes of Mg-MnO2 possess a larger specific surface area compared to pristine δ-MnO2 , providing more electroactive sites and boosting the capacity of batteries. The ion diffusion coefficients of Mg-MnO2 can be enhanced due to the improved electrical conductivity by doped cations and oxygen vacancies in MnO2 lattices. The assembled Zn//Mg-MnO2 battery delivers a high specific capacity of 370 mAh g-1 at a current density of 0.6 A g-1 . Furthermore, the reaction mechanism confirms that Zn2+ insertion occurred after a few cycles of activation reactions. Most important, the reversible redox reaction between Zn2+ and MnOOH is found after several charge-discharge processes, promoting capacity and stability. It believes that this systematic research enlightens the design of high-performance of ZIBs and facilitates the practical application of Zn//MnO2 batteries.
更多
查看译文
关键词
magnesium modulation,manganese oxide,Zn,MnO2 batteries,high capacity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn