Identification and Functional Characterization of a Flavonol Synthase Gene from Sweet Potato [ipomoea Batatas (L.) Lam.]
FRONTIERS IN PLANT SCIENCE(2023)
摘要
Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, which catalyzes the conversion of dihydroflavonols into flavonols. In this study, the FLS gene IbFLS1 was cloned and characterized from sweet potato. The resulting IbFLS1 protein showed a high similarity with other plant FLSs. The conserved amino acids (HxDxnH motifs) binding ferrous iron and residues (RxS motifs) binding 2-oxoglutarate were found in IbFLS1 at conserved positions, as in other FLSs, suggesting that IbFLS1 belongs to the 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily. qRT-PCR analysis showed an organ-specific pattern of expression of the IbFLS1 gene, which was predominantly expressed in young leaves. The recombinant IbFLS1 protein could catalyze the conversion of dihydrokaempferol and dihydroquercetin to kaempferol and quercetin, respectively. The results of subcellular localization studies indicated that IbFLS1 was found mainly in the nucleus and cytomembrane. Furthermore, silencing the IbFLS gene in sweet potato changed the color of the leaves to purple, substantially inhibiting the expression of IbFLS1 and upregulating the expression of genes involved in the downstream pathway of anthocyanin biosynthesis (i.e., DFR, ANS, and UFGT). The total anthocyanin content in the leaves of the transgenic plants was dramatically increased, whereas the total flavonol content was significantly reduced. Thus, we conclude that IbFLS1 is involved in the flavonol biosynthetic pathway and is a potential candidate gene of color modification in sweet potato.
更多查看译文
关键词
sweet potato,flavonol synthase,flavonols,anthocyanins,RNAi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn