Transfer Learning in a Biomaterial Fibrosis Model Identifies in Vivo Senescence Heterogeneity and Contributions to Vascularization and Matrix Production Across Species and Diverse Pathologies

GEROSCIENCE(2023)

引用 6|浏览5
摘要
Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreER T2 ;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.
更多
查看译文
关键词
Senescence,RNA sequencing,Fibrosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn