WashRing: an Energy-Efficient and Highly Accurate Handwashing Monitoring System Via Smart Ring

IEEE TRANSACTIONS ON MOBILE COMPUTING(2024)

引用 0|浏览36
摘要
The outbreak of COVID-19 has greatly changed everyone's lifestyle all over the world. One of the best ways to prevent the spread of infections is by washing hands properly. Although a number of hand hygiene monitoring systems have been proposed, they either cannot achieve high accuracy in practice or work only in limited environments such as hospitals. Therefore, a ubiquitous, energy-efficient and highly accurate hand hygiene monitoring system is still lacking. In this paper, we present WashRing —the first smart ring-based handwashing monitoring system. In WashRing, we design a Partially Observable Markov Decision Process (POMDP) based adaptive sampling approach to achieve high energy efficiency. Then, we design an automatic feature extraction scheme based on wavelet scattering and a CNN-LSTM neural network to achieve fine-grained gesture recognition. Finally, we model the handwashing gesture classification as a few-shot learning problem to mitigate the burden of collecting extensive data from five fingers. We collect data from 25 subjects over 2 months and evaluate the system performance on both commercial OURA ring and customized ring. Evaluation results show that WashRing achieves 97.8% accuracy which is 10.2%–15.9% higher than state-of-the-arts. Our adaptive sampling approach reduces energy consumption by 64.2% compared to fixed duty cycle sampling strategies.
更多
查看译文
关键词
Hand washing,wearable devices,deep learning,energy-efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn