Detecting Changes in Population Trends in Infection Surveillance Using Community SARS-CoV-2 Prevalence As an Exemplar

AMERICAN JOURNAL OF EPIDEMIOLOGY(2024)

引用 0|浏览0
摘要
Detecting and quantifying changes in growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers’ rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. We included PCR results from all participants in the UK’s COVID-19 Infection Survey between August 2020-June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8,799,079 visits, 147,278 (1.7%) were PCR-positive. Change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR. When estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. Change-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel.
更多
查看译文
关键词
change-point detection,SARS-CoV-2 infection,community surveillance,real-time monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn