Engineering Perovskite Emissions Via Optical Quasi-Bound-States-in-the-Continuum
ADVANCED FUNCTIONAL MATERIALS(2024)
摘要
Metal halide perovskite quantum dots (PQDs) have emerged as promising materials due to their exceptional photoluminescence (PL) properties. A wide range of applications could benefit from adjustable luminescence properties, while preserving the physical and chemical properties of the PQDs. Therefore, post-synthesis engineering has gained attention recently, involving the use of ion-exchange or external stimuli, such as extreme pressure, magnetic and electric fields. Nevertheless, these methods typically suffer from spectrum broadening, intensity quenching or yield multiple bands. Alternatively, photonic antennas can modify the radiative decay channel of perovskites via the Purcell effect, with the largest wavelength shift being 8 nm to date, at an expense of 5-fold intensity loss. Here, we present an optical nanoantenna array with polarization-controlled quasi-bound-states-in-the-continuum (q-BIC) resonances, which can engineer and shift the photoluminescence wavelength over a 39 nm range and confers a 21-fold emission enhancement of FAPbI3 perovskite QDs. The spectrum is engineered in a non-invasive manner via lithographically defined antennas and the pump laser polarization at ambient conditions. Our research provides a path towards advanced optoelectronic devices, such as spectrally tailored quantum emitters and lasers.
更多查看译文
关键词
bound-states-in-the-continuum,optical nanoantennas,perovskite quantum dots,tunable photoluminescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn