ACT001 Ameliorates Ionizing Radiation-Induced Lung Injury by Inhibiting NLRP3 Inflammasome Pathway.
BIOMEDICINE & PHARMACOTHERAPY(2023)
摘要
Radiotherapy is a prevalent treatment modality for thoracic tumors; however, it can lead to radiation-induced lung injury (RILI), which currently lacks effective interventions. ACT001, a prodrug of micheliolide, has demonstrated promising clinical application potential, yet its impact on RILI requires further validation. This study aims to investigate the radioprotective effects of ACT001 on RILI and elucidate its underlying mechanism. Sprague-Dawley rats were utilized to induce RILI following 20 Gy X-ray chest irradiation, and lung tissue inflammation and fibrosis were assessed using hematoxylin and eosin (H&E) and Masson staining. Lung injury, inflammation, and oxidative stress markers were evaluated employing commercial kits. Pyroptosis-related differentially expressed genes (DEGs) were analyzed using a microarray dataset from the Gene Expression Omnibus (GEO) database, and their functions and hub genes were identified through protein-protein interaction networks. Pyroptosis-related genes were detected via RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. The results demonstrated that ACT001 ameliorated RILI, diminished pro-inflammatory cytokine release and fibrosis, and mitigated the activation of the NLRP3 inflammasome while inhibiting pyroptosis in lung tissue. In conclusion, our study reveals that ACT001 can suppress NLRP3 inflammasomemediated pyroptosis and improve RILI, suggesting its potential as a novel protective agent for RILI.
更多查看译文
关键词
ACT001,Radiation-induced lung injury,Pyroptosis,Bioinformatics,Inflammasome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn