Dopamine receptor-mediated roles on retinal ganglion cell hyperexcitability and injury in experimental glaucoma

Cellular Signalling(2023)

引用 0|浏览11
摘要
Extraordinary excitability (hyperexcitability) is closely related to retinal ganglion cell (RGC) injury in glaucoma. Dopamine (DA) and its receptors are involved in modulating RGC excitability. We investigated how DA system affects RGC injury in chronic ocular hypertension (COH) experimental glaucoma model. Western blotting and immunohistochemistry results revealed that expression of DA D2-like receptor (D2R) in RGCs was increased in COH retinas. Patch-clamp recordings showed that outward K+ currents were downregulated, while Na+ currents and NaV1.6 expression were upregulated in RGCs of COH retinas, which could be reversed by intravitreal pre-injection of the D2R antagonist sulpiride, but not by the D1-like receptor (D1R) antagonist SCH23390. However, pre-injection of the D1R agonist SKF81297 could partially reverse the increased expression of NaV1.6 proteins. Consistently, the numbers of evoked action potentials induced by current injections were increased in RGCs of COH retinas, indicating that RGCs may be in a condition of hyperexcitability. The increased frequency of evoked action potentials could be partially block by pre-injection of sulpiride, SKF81297 or DA, respectively. Furthermore, the increased number of TUNEL-positive RGCs in COH retinas could be partially reduced by intravitreal pre-injection of sulpiride, but not by pre-injection of SCH23390. Moreover, pre-injection of SKF81297 or DA could reduce the number of TUNEL-positive RGCs in COH retinas. All these results indicate that in COH retina, activation of D2R enhances RGC hyperexcitability and injury, while activation of D1R results in the opposite effects. Selective inhibition of D2R or activation of D1R may be an effective strategy for treatment of glaucoma.
更多
查看译文
关键词
retinal ganglion cell hyperexcitability,experimental glaucoma,receptor-mediated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn