Comparative Analysis of the Effects of Conventional and Biodegradable Plastic Mulching Films on Soil-Peanut Ecology and Soil Pollution.

Chemosphere(2023)

引用 1|浏览49
摘要
In agricultural production, biodegradable plastic mulching film (Bio-PMF) has the potential to replace conventional plastic mulching film (CPMF) due to its degradability, but their impacts on soil-crop ecology are controversial. In this study, from 2019 to 2021, effects of CPMF and Bio-PMF on the soil-crop ecology and soil pollution were evaluated on a peanut farm. Compared to the Bio-PMF, an overall improvement in the soil-peanut ecology under the CPMF was observed, including an increase of 10.77 ± 4.8% in peanut yield, an amelioration of four soil physicochemical properties (total P and available P in the flowering stage, total P and temperature in the mature stage), an increase of rhizobacterial relative abundances in class level (Bacteroidia, Blastocatellia, Thermoleophilia and Vicinamibacteria in the flowering stage, Nitrospira and Bacilli in the mature stage) and genus level (RB41 and Bacillus in the flowering stage, Bacillus and Dongia in the mature stage), and an enhancement of soil nitrogen metabolism abilities (ureolysis, nitrification and aerobic ammonia in the flowering stage, nitrate reduction and nitrite ammonification in the mature stage). These preserved soil nutrients and temperature, reshaped rhizobacterial communities, and enhanced soil nitrogen metabolism abilities in the mature stage were obviously correlated with peanut yield under CPMF. However, such remarkable relations were not existed under Bio-PMF. In addition, compared with Bio-PMF, CPMF significantly increased the contents of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and microplastics (MPs) in soil by 79.93, 44.55, 138.72 and 14.1%, respectively. Thus, CPMF improved soil-peanut ecology and caused serious soil pollution, while Bio-PMF introduced little pollutants into the soil and had little impact on soil-peanut ecology. Based on these, the degradation ability of CPMF or the ecological improvement capacity of Bio-PMF should be improved to obtain the environmentally and soil-crop ecology friendly plastic film in the future.
更多
查看译文
关键词
Cellulose-based bio-PMF,CPMF,Peanut growth,Rhizobacterial community,Soil physicochemical property,Plastic mulching film pollutants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn