Cytosolic JNK-dependent Microtubule Reassembly Protects Jurkat Leukemia Cells from Selenite-Induced Apoptosis

JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY(2023)

引用 0|浏览9
摘要
BACKGROUND:Selenite at high dosage exhibits great potential in curing tumors. It has been shown that selenite inhibits tumor growth through regulation of microtubule dynamics, however, the exact underlying mechanisms remained to be fully elucidated.METHODS & RESULTS:Western blots were carried out to evaluate expression level of different molecules. Our current study discovered that selenite induced microtubule disassembly, cell cycle arrest and finally resulted in apoptosis in Jurkat leukemia cells, while during this process disassembled tubulins were re-organized after long-term exposure to selenite. Furthermore, JNK was activated in the cytoplasm of selenite-treated Jurkat cells, and inhibition of JNK activity successfully prevented the process of microtubule re-assembly. Moreover, inactivation of JNK further enhanced selenite-induced cell cycle arrest and apoptosis. According to the results from cell counting-8 assay, blockage of microtubule re-assembly by colchicine further inhibited Jurkat cell viability after exposure to selenite. Experiments in a xenograft model also proved that selenite could alter JNK activity, destroy microtubule structure and inhibit cell division in vivo. Moreover, TP53, MAPT and YWHAZ were identified to be three most confident interactors that link JNK to microtubule assembly using PPIs analysis.CONCLUSION:Our study indicated that cytosolic JNK-dependent microtubule re-organization took a protective function during selenite-induced apoptosis, while inhibition of this process would finally enhance the anti-tumor effect of selenite.
更多
查看译文
关键词
Selenite,Apoptosis,Microtubule,JNK
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn