Towards Robust Arbitrarily Oriented Subspace Clustering
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT I(2019)
摘要
Clustering high-dimensional data is challenging since meaningful clusters usually hide in the arbitrarily oriented subspaces, and classical clustering algorithms like k-means tend to fail in such case. Subspace clustering has thus attracted growing attention in the last decade and many algorithms have been proposed such as ORCLUS and 4C. However, existing approaches are usually sensitive to global and/or local noisy points, and the overlapping subspace clusters are little explored. Beyond, these approaches usually involve the exhaustive local search for correlated points or subspaces, which is infeasible in some cases. To deal with these problems, in this paper, we introduce a new subspace clustering algorithm called RAOSC, which formulates the Robust Arbitrarily Oriented Subspace Clustering as a group structure low-rank optimization problem. RAOSC is able to recover subspace clusters from a sea of noise while noise and overlapping points can be naturally identified during the optimization process. Unlike existing low-rank based subspace clustering methods, RAOSC can explicitly produce the subspaces of clusters without any prior knowledge of subspace dimensionality. Furthermore, RAOSC does not need a post-processing procedure to obtain the clustering result. Extensive experiments on both synthetic and real-world data sets have demonstrated that RAOSC allows yielding high-quality clusterings and outperforms many state-of-the-art algorithms.
更多查看译文
关键词
Subspace clustering,Correlation clustering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn