KU-DMIS-MSRA at RadSum23: Pre-trained Vision-Language Model for Radiology Report Summarization

conf_acl(2023)

引用 0|浏览101
摘要
In this paper, we introduce CheXOFA, a new pre-trained vision-language model (VLM) for the chest X-ray domain. Our model is initially pre-trained on various multimodal datasets within the general domain before being transferred to the chest X-ray domain. Following a prominent VLM, we unify various domain-specific tasks into a simple sequence-to-sequence schema.It enables the model to effectively learn the required knowledge and skills from limited resources in the domain.Demonstrating superior performance on the benchmark datasets provided by the BioNLP shared task (Delbrouck et al., 2023), our model benefits from its training across multiple tasks and domains.With subtle techniques including ensemble and factual calibration, our system achieves first place on the RadSum23 leaderboard for the hidden test set.
更多
查看译文
关键词
radiology,report,ku-dmis-msra,pre-trained,vision-language
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn