Development of SSR Molecular Markers and Genetic Diversity Analysis of Clematis Acerifolia from Taihang Mountains.
PLOS ONE(2023)
摘要
Investigating the genetic diversity and population structure is important in conserving narrowly distributed plants. In this study, 90 Clematis acerifolia (C. acerifolia) plants belonging to nine populations were collected from the Taihang Mountains in Beijing, Hebei, and Henan. Twenty-nine simple sequence repeats (SSR) markers developed based on RAD-seq data were used to analyze the genetic diversity and population structure of C. acerifolia. The mean PIC value for all markers was 0.2910, indicating all SSR markers showed a moderate degree of polymorphism. The expected heterozygosity of the whole populations was 0.3483, indicating the genetic diversity of both C. acerifolia var. elobata and C. acerifolia were low. The expected heterozygosity of C. acerifolia var. elobata (He = 0.2800) was higher than that of C. acerifolia (He = 0.2614). Genetic structure analysis and principal coordinate analysis demonstrated that C. acerifolia and C. acerifolia var. elobata showed great genetic differences. Molecular variance analysis (AMOVA) demonstrated that within-population genetic variation (68.31%) was the main contributor to the variation of the C. acerifolia populations. Conclusively, C. acerifolia var. elobata had higher genetic diversity than C. acerifolia, and there are significant genetic differences between C. acerifolia and C. acerifolia var. elobata, and small genetic variations within the C. acerifolia populations. Our results provide a scientific and rational basis for the conservation of C. acerifolia and provide a reference for the conservation of other cliff plants.
更多查看译文
关键词
species diversity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn