Copper Transporter Protein (mctb) As a Therapeutic Target to Elicit Antimycobacterial Activity Against Tuberculosis.
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS(2024)
摘要
Tuberculosis (TB) is a prehistoric infection and major etiologic agent of TB, Mycobacterium tuberculosis, which is considered to have advanced from an early progenitor species found in Eastern Africa. By the 1800s, there were approximately 800 to 1000 fatality case reports per 100,000 people in Europe and North America. This research suggests an In-silico study to identify potential inhibitory compounds for the target Mycobacterial copper transport protein (Mctb). ADME-based virtual screening, molecular docking, and molecular dynamics simulations were conducted to find promising compounds to modulate the function of the target protein. Four chemical compounds, namely Anti-MCT1, Anti-MCT2, Anti-MCT3 and Anti-MCT4 out of 1500 small molecules from the Diverse-lib of MTiOpenScreen were observed to completely satisfy Lipinski rule of five and Veber's rule. Further, significantly steady interactions with the MctB target protein were observed. Docking experiments have presented 9 compounds with less than -9.0 kcal/mol free binding energies and further MD simulation eventually gave 4 compounds having potential interactions and affinity with target protein and favorable binding energy ranging from -9.2 to -9.3 kcal/mol. We may propose these compounds as an effective candidate to reduce the growth of M. tuberculosis and may also assist present a novel therapeutic approach for Tuberculosis. In vivo and In vitro validation would be needed to proceed further in this direction.Communicated by Ramaswamy H. Sarma.
更多查看译文
关键词
TB treatment,mycobacterial copper transport protein,molecular dynamics simulations,PubChem BioAssay database,molecular docking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn