Thin-film Design of Amorphous Hafnium Oxide Nanocomposites Enabling Strong Interfacial Resistive Switching Uniformity.

SCIENCE ADVANCES(2023)

引用 3|浏览23
摘要
A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium-oxide-based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. The added Ba prevents the films from crystallizing and leads to ∼20-nm-thin films consisting of an amorphous HfO x host matrix interspersed with ∼2-nm-wide, ∼5-to-10-nm-pitch Ba-rich amorphous nanocolumns penetrating approximately two-thirds through the films. This restricts the RS to an interfacial Schottky-like energy barrier whose magnitude is tuned by ionic migration under an applied electric field. Resulting devices achieve stable cycle-to-cycle, device-to-device, and sample-to-sample reproducibility with a measured switching endurance of ≥10 4 cycles for a memory window ≥10 at switching voltages of ±2 V. Each device can be set to multiple intermediate resistance states, which enables synaptic spike-timing–dependent plasticity. The presented concept unlocks additional design variables for RS devices.
更多
查看译文
关键词
Thin Film Growth,Thin Films,Resistive Switching,Hafnium Oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn