Features of Metabolism Associated Molecular Patterns in Pancreatic Ductal Adenocarcinoma
Cancer gene therapy(2023)
摘要
Exploring pancreatic ductal adenocarcinoma (PDAC) metabolic landscape would contribute to further understand PDAC from the metabolic perspective and provide more details for precise treatment design. This study aims to describe metabolic landscape of PDAC. Bioinformatics analysis was used to investigate the differences of genome, transcriptome, and proteome levels of metabolic patterns. Three subtypes (MC1, MC2, and MC3) were identified and characterized as distinct metabolic patterns. MC1, enriched in lipid metabolism and amino acid metabolism signatures, was associated with lower abundance of immune cells and stromal cells, and non-response to immunotherapy. MC2 displayed immune-activated characteristics, minor genome alterations and good response to immunotherapy. MC3 was characterized by high glucose metabolism, high pathological grade, immune-suppressed features, poor prognosis, and epithelial-mesenchymal transition phenotype. A ninety-three gene classifier preformed robust prediction and high accuracy (training set: 93.7%; validation set 1: 85.0%; validation set 2: 83.9%). Using random forest classifier, probabilities of three patterns could be predicted on pancreatic cancer cell lines, which could be used to find vulnerable targets in response to both genetic and drug perturbation. Our study revealed features of PDAC metabolic landscape, which could be expected to provide a reference for prognosis prediction and precise treatment design.
更多查看译文
关键词
Biomarkers,Cancer microenvironment,Biomedicine,general,Gene Therapy,Gene Expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn