Spinal CBX2 Contributes to Neuropathic Pain by Activating ERK Signaling Pathway in Male Mice
NEUROSCIENCE LETTERS(2023)
摘要
The deregulated spinal cord proteins induced by nerve injury are the key to neuropathic pain. Integrated transcriptome and translatome analyses can screen out deregulated proteins controlled by only post-transcriptional regulation. By comparing RNA sequencing (RNA-seq) and ribosome profiling sequencing (Ribo-seq) data, we identified an upregulated protein, chromobox 2 (CBX2), with its mRNA level unchanged in the spinal cord after peripheral nerve injury. CBX2 was mainly distributed in the spinal cord neurons. Blocking the SNL-induced increase of spinal CBX2 attenuated the neuronal and astrocytes hyperactivities and pain hypersensitivities in both the development and maintenance phases. Conversely, mimicking the upregulation of CBX2 in the spinal cord facilitated the activities of neurons and astrocytes and produced evoked nociceptive hypersensitivity and spontaneous pain. Our results also revealed that activating the ERK pathway, upregulating CXCL13 in neurons, and CXCL13 further inducing astrocyte activation were possible downstream signaling mechanisms of CBX2 in pain processing. In conclusion, upregulation of CBX2 after nerve injury leads to nociceptive hyperalgesia by promoting neuronal and astrocyte hyperactivities through the ERK pathway. Inhibiting CBX2 upregulation may be therapeutically beneficial.
更多查看译文
关键词
Neuropathic pain,Chromobox 2,Extracellular signal-regulated kinase 1,Spinal cord,Astrocyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn