Comparison of Gas–Particle Partitioning of Glyoxal and Methylglyoxal in the Summertime Atmosphere at the Foot and Top of Mount Hua

MOLECULES(2023)

引用 0|浏览24
摘要
Glyoxal and methylglyoxal are important volatile organic compounds in the atmosphere. The gas–particle partitioning of these carbonyl compounds makes significant contributions to O3 formation. In this study, both the gas- and particle-phase glyoxal and methylglyoxal concentrations at the foot and top of Mount Hua were determined simultaneously. The results showed that the gaseous-phase glyoxal and methylglyoxal concentrations at the top were higher than those at the foot of the mountain. However, the concentrations for the particle phase showed the opposite trend. The average theoretical values of the gas–particle partitioning coefficients of the glyoxal and methylglyoxal concentrations (4.57 × 10−10 and 9.63 × 10−10 m3 μg−1, respectively) were lower than the observed values (3.79 × 10−3 and 6.79 × 10−3 m3 μg−1, respectively). The effective Henry’s law constants (eff.KH) of the glyoxal and methylglyoxal were in the order of 108 to 109 mol/kgH2O/atm, and they were lower at the foot than they were at the top. The particle/gas ratios (P/G ratios) of the glyoxal and methylglyoxal were 0.039 and 0.055, respectively, indicating more glyoxal and methylglyoxal existed in the gas phase. The factors influencing the partitioning coefficients of the glyoxal and methylglyoxal were positively correlated with the relative humidity (RH) and negatively correlated with the PM2.5 value. Moreover, the partitioning coefficient of the glyoxal and methylglyoxal was more significant at the top than at the foot of Mount Hua.
更多
查看译文
关键词
Gly and mGly,gas-particle partitioning,influencing factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn