An Extended Low-Density Atmosphere Around the Jupiter-sized Planet WASP-193 B
NATURE ASTRONOMY(2024)
摘要
Gas giants transiting bright nearby stars provide crucial insights into planetary system formation and evolution mechanisms. Most of these planets show certain average characteristics, serving as benchmarks for our understanding of planetary systems. However, outliers like the planet we present in this study, WASP-193 b, offer unique opportunities to explore unconventional formation and evolution processes. This planet completes an orbit around its V-band-magnitude 12.2 F9 main-sequence host star every 6.25 days. Our analyses found that WASP-193 b has a mass of 0.139 +/- 0.029 M-J and a radius of 1.464 +/- 0.058 R-J, translating into an extremely low density of 0.059 +/- 0.014g cm(-3), at least one order of magnitude less than standard gas giants like Jupiter. Typical gas giants such as Jupiter have densities that range between 0.2 g cm(-3) and 2 g cm(-3). The combination of its large transit depth (1.4%), extremely low density, high-equilibrium temperature (1,254 +/- 31 K) and the infrared brightness of its host star (K-band magnitude 10.7) makes WASP-193 b an exquisite target for characterization by transmission spectroscopy (transmission spectroscopy metric similar to 600). One single JWST transit observation would yield detailed insights into its atmospheric properties and planetary mass, providing a unique window to explore the mechanisms behind its exceptionally low density and shed light on giant planets' diverse nature.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn