The Development of Solid Oxide Co-Electrolysis of H2O and CO2 on Large-Size Cells and Stacks
iEnergy(2023)
摘要
In the context of carbon neutrality, conversion of CO 2 into CO is an effective way for negative carbon emission. Electrochemical reduction is a novel developed pathway, among which, solid oxide co-electrolysis technology is promising for its high efficiency and low electricity demand. Researches concerning the large-size cell and stack of application level are important. This review, targeting at the not yet fully understood reaction mechanism and the most concerning issue of durability, details the reported factors playing important roles in the reaction mechanism and durability of co-electrolysis. It is found that the operating conditions such as inlet mixtures and applied current significantly affect the reaction mechanism of co-electrolysis and the experiments on button cells can not reflect the real reaction mechanism on industrial-size cells. Besides, the durability test of large-size single cells and stacks at high current with high conversion rate and the potential of solid oxide co-electrolysis combing with intermittent renewable energy are also reviewed and demonstrated. Finally, an outlook for future exploration is also offered.
更多查看译文
关键词
Solid oxide co-electrolysis,large-size cell,stack,reaction mechanism,durability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn