Saliency Strikes Back: How Filtering out High Frequencies Improves White-Box Explanations

ICML(2024)

引用 0|浏览32
摘要
Attribution methods correspond to a class of explainability methods (XAI) that aim to assess how individual inputs contribute to a model's decision-making process. We have identified a significant limitation in one type of attribution methods, known as ``white-box" methods. Although highly efficient, as we will show, these methods rely on a gradient signal that is often contaminated by high-frequency artifacts. To overcome this limitation, we introduce a new approach called "FORGrad". This simple method effectively filters out these high-frequency artifacts using optimal cut-off frequencies tailored to the unique characteristics of each model architecture. Our findings show that FORGradconsistently enhancesthe performance of already existing white-box methods, enabling them to compete effectively with more accurate yet computationally demanding "black-box" methods. We anticipate that our research will foster broader adoption of simpler and more efficient white-box methods for explainability, offering a better balance between faithfulness and computational efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn