Glutaredoxin-1 Promotes Lymphangioleiomyomatosis Progression Through Inhibiting Bim-mediated Apoptosis Via COX2/PGE2/ERK Pathway
CLINICAL AND TRANSLATIONAL MEDICINE(2023)
摘要
BACKGROUND:Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease, characterized by progressive cyst formation and respiratory failure. Clinical treatment with the mTORC1 inhibitor rapamycin could relieve partially the respiratory symptoms, but not curative. It is urgent to illustrate the fundamental mechanisms of TSC2 deficiency to the development of LAM, especially mTORC1-independent mechanisms. Glutaredoxin-1 (Glrx), an essential glutathione (GSH)-dependent thiol-oxidoreductase, maintains redox homeostasis and participates in various processes via controlling protein GSH adducts. Redox signalling through protein GSH adducts in LAM remains largely elusive. Here, we demonstrate the underlying mechanism of Glrx in the pathogenesis of LAM.METHODS:1. Abnormal Glrx expression in various kinds of human malignancies was identified by the GEPIA tumour database, and the expression of Glrx in LAM-derived cells was detected by real-time quantitative reverse transcription (RT-qPCR) and immunoblot. 2. Stable Glrx knockdown cell line was established to evaluate cellular impact. 3. Cell viability was determined by CCK8 assay. 4. Apoptotic cell number and intracellular reactive oxygen species (ROS) level were quantified by flow cytometry. 5. Cox2 expression and PGE2 production were detected to clarify the mechanism of Bim expression modulated by Glrx. 6. S-glutathionylated p65 was enriched and detected by immunoprecipitation and the direct regulation of Glrx on p65 was determined. 7. The xenograft animal model was established and photon flux was analyzed using IVIS Spectrum.RESULTS:In LAM, TSC2 negatively regulated abnormal Glrx expression and activation in a mTORC1-independent manner. Knockdown of Glrx increased the expression of Bim and the accumulation of ROS, together with elevated S-glutathionylated proteins, contributing to the induction of apoptotic cell death and inhibited cell proliferation. Knockdown of Glrx in TSC2-deficient LAM cells increased GSH adducts on nuclear factor-kappa B p65, which contributed to a decrease in the expression of Cox2 and the biosynthesis of PGE2. Inhibition of PGE2 metabolism attenuated phosphorylation of ERK, which led to the accumulation of Bim, due to the imbalance of its phosphorylation and proteasome degradation. In xenograft tumour models, knockdown of Glrx in TSC2-deficient LAM cells inhibited tumour growth and increased tumour cell apoptosis.CONCLUSIONS:Collectively, we provide a novel redox-dependent mechanism in the pathogenesis of LAM and propose that Glrx may be a beneficial strategy for the treatment of LAM or other TSC-related diseases.
更多查看译文
关键词
apoptosis,Bim,glutaredoxin,lymphangioleiomyomatosis,oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn