Ultrafast Yttrium Hydride Chemistry at High Pressures Via Non-equilibrium States Induced by an X-ray Free Electron Laser
JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)
摘要
Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.5 MHz using time-resolved X-ray diffraction. Exploiting non-equilibrium pathways, we synthesize and characterize a hydride in a Weaire-Phelan structure type at pressures as low as 125 GPa, predicted using a crystal structure search, with a hydrogen content of 4.0-5.75 hydrogens per cation, that is enthalpically metastable on the convex hull.
更多查看译文
关键词
High-pressure Phases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn