A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee
ICML 2023(2023)
摘要
Given a matrix $A\in \mathbb{R}^{n\times d}$ and a vector $b\in \mathbb{R}^n$, we consider the regression problem with $\ell_\infty$ guarantees: finding a vector $x'\in \mathbb{R}^d$ such that $||x'-x^* ||_\infty \leq \frac{\epsilon}{\sqrt{d}}\cdot ||Ax^*-b||_2\cdot ||A^\dagger||$ with $x^*$ being the optimal solution to the regression $||Ax-b||_2$. One popular approach for solving $\ell_2$ regression problem is via sketching: picking a structured random matrix $S\in \mathbb{R}^{m\times n}$ with $m\ll n$ and $SA$ can be quickly computed, solve the ``sketched'' regression problem $x'=\mathrm{argmin} ||SAx-Sb||_2$. In this paper, we show that in order to obtain such $\ell_\infty$ guarantee for $\ell_2$ regression, one has to use sketching matrices that are *dense*. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that, there exists a distribution of dense sketching matrices with $m=\epsilon^{-2}d\log^3(n/\delta)$ such that solving the sketched regression problem gives the $\ell_\infty$ guarantee, with probability at least $1-\delta$. Moreover, the matrix $SA$ can be computed in time $O(nd\log n)$. Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which $m=\Omega(\epsilon^{-2}d^{1+\gamma})$ for $\gamma\in (0, 1)$ is required. Moreover, we develop a novel analytical framework for $\ell_\infty$ guarantee regression that utilizes the *Oblivious Coordinate-wise Embedding* (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is much simpler and more general than that of [Price, Song and Woodruff, ICALP'17]. Leveraging this framework, we extend the $\ell_\infty$ guarantee regression result to dense sketching matrices for computing fast tensor product of vectors.
更多查看译文
关键词
Sparse Approximation,Sparse Representations,Convex Optimization,Approximation Algorithms,Compressed Sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn