T-Rex: Optimizing Pattern Search on Time Series.
Proceedings of the ACM on Management of Data(2023)
摘要
Pattern search is an important class of queries for time series data. Time series patterns often match variable-length segments with a large search space, thereby posing a significant performance challenge. The existing pattern search systems, for example, SQL query engines supporting MATCH_RECOGNIZE, are ineffective in pruning the large search space of variable-length segments. In many cases, the issue is due to the use of a restrictive query language modeled on time series points and a computational model that limits search space pruning. We built T-ReX to address this problem using two main building blocks: first, a MATCH_RECOGNIZE language extension that exposes the notion of segment variable and adds new operators, lending itself to better optimization; second, an executor capable of pruning the search space of matches and minimizing total query time using an optimizer. We conducted experiments using 5 real-world datasets and 11 query templates, including those from existing works. T-ReX outperformed an optimized NFA-based pattern search executor by 6x in median query time and an optimized tree-based executor by 19X.
更多查看译文
关键词
operator,pattern search,query optimizer,query processing,time series
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn