High-frequency Terahertz Waves Disrupt Alzheimer’s Β-Amyloid Fibril Formation
eLight(2023)
摘要
The accumulation and deposition of amyloid can cause a variety of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. The degradation or clearance of this accumulation is currently the most widely accepted therapeutic strategy for intervention in these pathologies. Our study on amyloid-β (Aβ) oligomers in vitro revealed that high-frequency terahertz (THz) waves at a specific frequency of 34.88 THz could serve as a physical, efficient, non-thermal denaturation technique to delay the fibrotic process by 80%, as monitored by a thioflavine T (ThT) binding assay and Fourier transform infrared (FTIR) spectroscopy. Additionally, THz waves of this frequency have been shown to have no side effects on normal cells, as confirmed by cell viability and mitochondrial membrane potential assays. Furthermore, molecular dynamic (MD) simulations revealed that the THz waves could resonate with Aβ fibrils, disrupting the dense conformation by breaking the β-sheet structure and promoting the formation of abundant coil and bend structures. This study uses the amyloid of Aβ as an example, and the results will further guide interventions for the accumulation of other amyloids, which may provide new ideas for the remission of related diseases.
更多查看译文
关键词
Terahertz Technology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn