Ultra-short-term Wind Speed Prediction Based on Deep Spatial-Temporal Residual Network
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY(2023)
摘要
To maintain power system stability, accurate wind speed prediction is essential. Taking into account the temporal and spatial characteristics of wind speed in an integrated manner can improve the accuracy of wind speed prediction. Considering complex nonlinear spatial factors such as wake effects in wind farms, a deep residual network is valuable in predicting wind speed with a high degree of accuracy. Wind speed data are typically a time series that requires feature extraction and attribute modeling, while maintaining signal integrity. In order to measure the importance of different temporal attributes and effectively aggregate temporal and spatial features, we used a parameter fusion matrix. We introduce a deep spatial-temporal residual network (DST-ResNet) for wind speed prediction that extracts the spatial-temporal characteristics, which can forecast the future wind speed of a multi-site wind farm in a particular region. In this model, wind speed data's nearby property and periodic property are separately modeled using a residual network. The outputs of the two temporal components are dynamically aggregated using a parameter fusion matrix and then fused with additional meteorological features to achieve wind speed prediction. Based on wind data from the National Renewable Energy Laboratory, our experiments show that the proposed DST-ResNet improves prediction accuracy by 8.90%.
更多查看译文
关键词
Wind Power Forecasting,Short-Term Forecasting,Load Forecasting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn