Language-enhanced RNR-Map: Querying Renderable Neural Radiance Field Maps with Natural Language

2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW(2023)

引用 0|浏览25
摘要
We present Le-RNR-Map, a Language-enhanced Renderable Neural Radiance map for Visual Navigation with natural language query prompts. The recently proposed RNR-Map employs a grid structure comprising latent codes positioned at each pixel. These latent codes, which are derived from image observation, enable: i) image rendering given a camera pose, since they are converted to Neural Radiance Field; ii) image navigation and localization with astonishing accuracy. On top of this, we enhance RNR-Map with CLIP-based embedding latent codes, allowing natural language search without additional label data. We evaluate the effectiveness of this map in single and multi-object searches. We also investigate its compatibility with a Large Language Model as an "affordance query resolver". Code and videos are available at the link https://intelligolabs.github.io/Le-RNR-Map/.
更多
查看译文
关键词
Image Captioning,Representation Learning,Visual Question Answering,Visual Recognition,Image Recognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn