Sentiment Analysis of Russia-Ukraine Conflict Tweets Using RoBERTa

UNICIENCIA(2023)

引用 0|浏览7
摘要
[Objective] The moment Russia officially invaded Ukraine, the world experienced a period of tension and uncertainty. As a social release valve digital communication, channels increased their number of users and activity, generating a large amount of data. Twitter, in particular, being one of the most popular channels for sharing information and opinions, exploded with activities related to this historical moment. And as with many other social events, such as COVID-19, this social network became one of the main sources of information, opinion, and knowledge. This paper analyzes sentiments in tweets related to the armed conflict between Russia and Ukraine. [Methodology] The analyzed dataset contains tweets from January 1, 2022, through March 3, 2022, and was collected using event-related hashtags. In total, 603,552 tweets in English and 1,664 in Russian were analyzed. To perform emotion classification, DistilRoBERTa variant and the pre-trained XLM-RoBERTa-Base model were used, respectively. English tweets were classified into seven emotions: anger, disgust, fear, joy, neutral, sadness, and surprise. Russian tweets were classified into positive negative, and neutral polarities. [Results] The results showed that most English tweets convey fear and anger as predominant feelings, reaching 32.08% and 15.18% of the total tweets analyzed, respectively. Regarding tweets in Russian, the majority presented negative polarity, with 86.83% of the total. Some of the most recurrent phrases in the analysis allude to support for Ukraine and call for a halt to the war. Likewise, phrases of concern for the crisis, weapons, and fatalities are recurrent. [Conclusion] As expected, most people were concerned about the armed conflict and upset and angry about its consequences. Future works could use more tweets to improve the analysis and increase the time range to be studied. The analysis could also be segmented to study the sentiments of tweets according to different groupings and compare them with other societies, for instance, tweets could be segmented by country and analyzed accordingly.
更多
查看译文
关键词
sentiment analysis,Russia -Ukraine conflict,Twitter,RoBERTa
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn