Affected Inflammation-Related Signaling Pathways in Snake Envenomation: A Recent Insight.
TOXICON(2023)
摘要
Snake envenomation is well known to cause grievous pathological signs, including haemorrhagic discharge, necrosis, and respiratory distress. However, inflammatory reactions are also common envenoming manifestations that lead to successive damage, such as oedema, ulceration, lymphadenectasis, systemic inflammatory response syndrome (SIRS) and even multiple organ dysfunction syndrome (MODS). Interference with the inflammatory burst is hence important in the clinical treatment of snake envenomation. Here, we summarize the typical snake toxins (or venoms) that cause inflammatory reactions and the underlying signaling pathways. In brief, inflammatory reactions are usually triggered by snake venom phospholipase A2 (svPLA2), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP) and C-type lectin/snaclec (CTL) as well as disintegrin (DIS) via multiple signaling pathways. They are nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide 3-Kinase/protein kinase B (PI3K/PKB also called PI3K-AKT) signaling pathways. Activation of these pathways promotes the expression of pro-inflammatory molecules such as cytokines, especially interleukin-1β (IL-1β) which causes further inflammatory cascades and manifestations, such as swelling, fever, pain, and severe complications. Remarkably, almost half of introduced snake toxins (or venoms) have anti-inflammatory effects through blocking these pathways and suppressing the expression of pro-inflammatory molecules. Investigation of affected inflammation-related signaling pathways is meaningful to achieve better clinical treatment.
更多查看译文
关键词
Snake envenomation,Inflammasome,NF-kappa B,MAPK,JAK-STAT,PI3K-AKT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn