Photo-enhanced Oxidation of Arsenite by Biochar: the Effect of Ph, Kinetics and Mechanisms.

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览25
摘要
The persistent and photo-induced free radicals of biochar play significant roles in the transformation or degradation of inorganic and organic pollutants. However, the redox capacity of biochar for arsenite (As(III)) photochemistry under different pH conditions remains unclear. In this study, we discovered that solar radiation primarily expedited the oxidation of As(III) by biochar by augmenting the production of reactive oxygen species (ROS). Biochar demonstrated a strong pH reliance on the photooxidation of As(III). Under acidic and neutral conditions, solar radiation amplified the generation of •OH (hydroxyl radicals) by BC-P (phenolic -OH of biochar) and semiquinone-type BC-PFRs (persistent free radicals of biochar) by 4.9 and 2.0 times, respectively, resulting in enhanced As(III) oxidation. Under alkaline conditions, BC-P and BC-Q (quinoid CO of biochar) facilitated the production of H2O2 (hydrogen peroxide) by 2.1 times through the spontaneous formation of semiquinone-type BC-PFRs via an anti-disproportionation reaction, promoting approximately 88.2% of As(III) photooxidation. Furthermore, solar radiation elevated around 11.8% As(III) oxidation driven by BC-Q and semiquinone-type BC-PFRs. This study provides a crucial theoretical foundation for using biochar to treat arsenic pollution in aquatic systems and understanding the migration and transformation of arsenic in different environments.
更多
查看译文
关键词
Biochar,Arsenite,Photooxidation,ROS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn