Comparative Study of the Photooxidation of Arsenite Mediated by Dissolved and Mineral-Associated Humic Acid under Light Irradiation.

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览53
摘要
The photochemical processes of dissolved humic acid and its potential contribution to As(III) oxidation in natural water has received considerable attention. However, the role of mineral-humic complexes in As(III) conversion is rarely studied. Herein, two simulated mineral-humic complexes were prepared by coating humic acid on hydrous aluminum oxide, HA@HAO, or montmorillonite, HA@SWy, respectively, and batch experiments at circumneutral pH were performed under light irradiation. Our findings showed that the light-assisted oxidation of As(III) increased with increasing fractions of organic carbon in mineral-humic complexes, and As(III) photooxidation with HA@HAO or HA@SWy was up to 18.2 or 3.5-fold higher compared to that measured in the presence of equivalent amount of free HA, respectively. The reactive triplet state of HA and hydroxyl radicals in HA@HAO and HA@SWy system made a primary contribution to As(III) oxidation under irradiation. The results indicated that mineral-humic complexes have dual roles, an adsorbent and a photosensitizer, to promote As(III) access to reactive intermediates at the particle surfaces. This process was important for As(III) conversion in paddy water as colloidal particles, composed of both minerals and HA, could greatly promote As(III) oxidation and As(V) immobilization. This study provides a previously overlooked, important mechanism of As(III) phototransformation mediated by mineral-associated humic acid in natural environment.
更多
查看译文
关键词
Aluminum hydroxide -organic associations,Arsenic adsorption,Montmorillonite-organic associations,Hydroxyl radical,Triplet state HA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn