Static Code Analysis in the AI Era: An In-depth Exploration of the Concept, Function, and Potential of Intelligent Code Analysis Agents
CoRR(2023)
摘要
The escalating complexity of software systems and accelerating development cycles pose a significant challenge in managing code errors and implementing business logic. Traditional techniques, while cornerstone for software quality assurance, exhibit limitations in handling intricate business logic and extensive codebases. To address these challenges, we introduce the Intelligent Code Analysis Agent (ICAA), a novel concept combining AI models, engineering process designs, and traditional non-AI components. The ICAA employs the capabilities of large language models (LLMs) such as GPT-3 or GPT-4 to automatically detect and diagnose code errors and business logic inconsistencies. In our exploration of this concept, we observed a substantial improvement in bug detection accuracy, reducing the false-positive rate to 66\% from the baseline's 85\%, and a promising recall rate of 60.8\%. However, the token consumption cost associated with LLMs, particularly the average cost for analyzing each line of code, remains a significant consideration for widespread adoption. Despite this challenge, our findings suggest that the ICAA holds considerable potential to revolutionize software quality assurance, significantly enhancing the efficiency and accuracy of bug detection in the software development process. We hope this pioneering work will inspire further research and innovation in this field, focusing on refining the ICAA concept and exploring ways to mitigate the associated costs.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn