Predicting the Efficacy of Non-Steroidal Anti-Inflammatory Drugs in Migraine Using Deep Learning and Three-Dimensional T1-weighted Images

ISCIENCE(2023)

引用 0|浏览18
摘要
Deep learning (DL) models based on individual images could contribute to tailored therapies and personalized treatment strategies. We aimed to construct a DL model using individual 3D structural images for predicting the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine. A 3D convolutional neural network model was constructed, with ResNet18 as the classification backbone, to link structural images to predict the efficacy of NSAIDs. In total, 111 patients were included and allocated to the training and testing sets in a 4:1 ratio. The prediction accuracies of the ResNet34, ResNet50, ResNeXt50, DenseNet121, and 3D ResNet18 models were 0.65, 0.74, 0.65, 0.70, and 0.78, respectively. This model, based on individual 3D structural images, demonstrated better predictive performance in comparison to conventional models. Our study highlights the feasibility of the DL algorithm based on brain structural images and suggests that it can be applied to predict the efficacy of NSAIDs in migraine treatment.
更多
查看译文
关键词
Clinical neuroscience,Bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn