Dual ICA to Extract Interacting Sets of Genes and Conditions from Transcriptomic Data

14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023(2023)

引用 0|浏览4
摘要
One of the challenges in RNA-Seq studies is finding subsets of genes that share a common mechanism of action or are associated with a regulon/pathway. Existing approaches often extract modules that reflect quantitative similarities (such as genes with correlated log-fold-changes) but do not adequately capture biological significance. In this work, we propose the Dual ICA methodology, which provides an agnostic way to extract "interacting modules" composed of sets of genes and conditions that exhibit strong associations. Dual ICA involves performing Independent Component Analysis (ICA) twice, once on the genes and once on the conditions. Using the resulting signal matrices, we extract respective sets of genes and conditions. The interaction between these sets is quantified using the coefficients from a linear regression and significance is determined through the Wald test and Z-score filtering. These coefficients are equivalent to the outer product of independent components obtained from the two signal matrices. Not only do the gene sets extracted align with known regulons, but the significant interacting modules they instantiate also encompass conditions that influence the expression of these regulons through shared mechanisms of action. Compared to traditional unsupervised clustering methods, Dual ICA demonstrates superior performance and provides explicit gene-condition sets for exploring functional relationships.
更多
查看译文
关键词
RNA-Seq studies,Independent Component Analysis (ICA),Co-expression analysis,Gene-condition sets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn