An End-to-end Platform for Digital Pathology Using Hyperspectral Autofluorescence Microscopy and Deep Learning Based Virtual Histology

MODERN PATHOLOGY(2024)

引用 0|浏览3
摘要
Conventional histopathology involves expensive and labor-intensive processes that often consume tissue samples, rendering them unavailable for other analyses. We present a novel end-to-end workflow for pathology powered by hyperspectral microscopy and deep learning. First, we developed a custom hyperspectral microscope to nondestructively image the autofluorescence of unstained tissue sections. We then trained a deep learning model to use autofluorescence to generate virtual histologic stains, which avoids the cost and variability of chemical staining procedures and conserves tissue samples. We showed that the virtual images reproduce the histologic features present in the real-stained images using a randomized nonalcoholic steatohepatitis (NASH) scoring comparison study, where both real and virtual stains are scored by pathologists (D.T., A.D.B., R.K.P.). The test showed moderate-to-good concordance between pathologists' scoring on corresponding real and virtual stains. Finally, we developed deep learning-based models for automated NASH Clinical Research Network score prediction. We showed that the end-to-end automated pathology platform is comparable with an independent panel of pathologists for NASH Clinical Research Network scoring when evaluated against the expert pathologist consensus scores. This study provides proof of concept for this virtual staining strategy, which could improve cost, efficiency, and reliability in pathology and enable novel approaches to spatial biology research.
更多
查看译文
关键词
artificial intelligence,deep learning,hyperspectral microscopy,machine learning,NASH,virtual staining
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn