VulExplainer: A Transformer-Based Hierarchical Distillation for Explaining Vulnerability Types

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING(2023)

引用 0|浏览11
摘要
Deep learning-based vulnerability prediction approaches are proposed to help under-resourced security practitioners to detect vulnerable functions. However, security practitioners still do not know what type of vulnerabilities correspond to a given prediction (aka CWE-ID). Thus, a novel approach to explain the type of vulnerabilities for a given prediction is imperative. In this paper, we propose VulExplainer , an approach to explain the type of vulnerabilities. We represent VulExplainer as a vulnerability classification task. However, vulnerabilities have diverse characteristics (i.e., CWE-IDs) and the number of labeled samples in each CWE-ID is highly imbalanced (known as a highly imbalanced multi-class classification problem), which often lead to inaccurate predictions. Thus, we introduce a Transformer-based hierarchical distillation for software vulnerability classification in order to address the highly imbalanced types of software vulnerabilities. Specifically, we split a complex label distribution into sub-distributions based on CWE abstract types (i.e., categorizations that group similar CWE-IDs). Thus, similar CWE-IDs can be grouped and each group will have a more balanced label distribution. We learn TextCNN teachers on each of the simplified distributions respectively, however, they only perform well in their group. Thus, we build a transformer student model to generalize the performance of TextCNN teachers through our hierarchical knowledge distillation framework. Through an extensive evaluation using the real-world 8,636 vulnerabilities, our approach outperforms all of the baselines by 5%–29%. The results also demonstrate that our approach can be applied to Transformer-based architectures such as CodeBERT, GraphCodeBERT, and CodeGPT. Moreover, our method maintains compatibility with any Transformer-based model without requiring any architectural modifications but only adds a special distillation token to the input. These results highlight our significant contributions towards the fundamental and practical problem of explaining software vulnerability.
更多
查看译文
关键词
Software vulnerability,software security
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn