The Short- and Long-Term Readmission of Four Major Categories of Digestive System Cancers: Does Obesity or Metabolic Disorder Matter?

FRONTIERS IN ENDOCRINOLOGY(2023)

引用 0|浏览31
摘要
PurposePatients with digestive system cancers (DSCs) are at a high risk for hospitalizations; however, the risk factors for readmission remain unknown. Here, we established a retrospective cohort study to assess the association between metabolic obesity phenotypes and readmission risks of DSC.Experimental designA total of 142,753 and 74,566 patients at index hospitalization were ultimately selected from the Nationwide Readmissions Database (NRD) 2018 to establish the 30-day and 180-day readmission cohorts, respectively. The study population was classified into four groups: metabolically healthy non-obese (MHNO), metabolically healthy obese (MHO), metabolically unhealthy non-obese (MUNO), and metabolically unhealthy obese (MUO). Multivariate Cox regression analysis was used to estimate the effect of metabolic obesity phenotypes on DSC readmission.ResultsThe MUNO phenotype had 1.147-fold (95% CI: 1.066, 1.235; p < 0.001) increased 180-day readmission risks in patients with neoplasm of the upper digestive tract. The MUNO phenotype had 1.073-fold (95% CI: 1.027, 1.121; p = 0.002) increased 30-day readmission risks and 1.067-fold (95% CI: 1.021, 1.115; p = 0.004) increased 180-day readmission risks in patients with neoplasm of the lower digestive tract. The MUNO and MUO phenotypes were independent risk factors of readmission in patients with liver or pancreatic neoplasm. Metabolic obesity status was independently associated with a high risk of severe and unplanned hospitalization within 30 days or 180 days.ConclusionBoth obesity and metabolic abnormalities are associated with a high risk for the poor prognosis of DSC patients. The effect of metabolic categories on the short- or long-term readmission of liver or pancreas cancers may be stronger than that of obesity.
更多
查看译文
关键词
obesity,metabolic,phenotype,digestive system,neoplasm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn