Utility of AlphaMissense predictions in Asparagine Synthetase deficiency variant classification
bioRxiv the preprint server for biology(2023)
摘要
AlphaMissense is a recently developed method that is designed to classify missense variants into pathogenic, benign, or ambiguous categories across the entire human proteome. Asparagine Synthetase Deficiency (ASNSD) is a developmental disorder associated with severe symptoms, including congenital microcephaly, seizures, and premature death. Diagnosing ASNSD relies on identifying mutations in the asparagine synthetase (ASNS) gene through DNA sequencing and determining whether these variants are pathogenic or benign. Pathogenic ASNS variants are predicted to disrupt the protein’s structure and/or function, leading to asparagine depletion within cells and inhibition of cell growth. AlphaMissense offers a promising solution for the rapid classification of ASNS variants established by DNA sequencing and provides a community resource of pathogenicity scores and classifications for newly diagnosed ASNSD patients. Here, we assessed AlphaMissense’s utility in ASNSD by benchmarking it against known critical residues in ASNS and evaluating its performance against a list of previously reported ASNSD-associated variants. We also present a pipeline to calculate AlphaMissense scores for any protein in the UniProt database. AlphaMissense accurately attributed a high average pathogenicity score to known critical residues within the two ASNS active sites and the connecting intramolecular tunnel. The program successfully categorized 78.9% of known ASNSD-associated missense variants as pathogenic. The remaining variants were primarily labeled as ambiguous, with a smaller proportion classified as benign. This study underscores the potential role of AlphaMissense in classifying ASNS variants in suspected cases of ASNSD, potentially providing clarity to patients and their families grappling with ongoing diagnostic uncertainty.
### Competing Interest Statement
The authors have declared no competing interest.
更多查看译文
关键词
asparagine synthetase deficiency,alphamissense predictions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn