Pulsed Heterodyne Interferometry for Nonlinear SOI Waveguide Characterization

EPJ web of conferences(2023)

引用 0|浏览23
摘要
Silicon waveguides are a promising candidate for integrated nonlinear optics applications. Nonlinear coefficients of Silicon on Insulator (SOI) waveguides have been previously measured using techniques such as Z-scan, D-scan, Four Wave Mixing (FWM) and Self-phase modulation. However, they have several drawbacks such as they operate at high power or are cumbersome to setup and require multiple measurements to determine all the coefficients. In this work, we develop a direct and single measurement technique to characterize the nonlinear processes in SOI waveguides. This is achieved by employing a heterodyne interferometric technique to accurately measure minute nonlinear response. The measured nonlinear amplitude and phase shifts are fit to extract third-order nonlinear coefficients of Two-photon absorption, Kerr nonlinear index, Free carrier absorption and Free carrier dispersion. The obtained coefficients for SOI waveguides are close to that found in literature measured using the above-mentioned techniques. The advantages of this method include easy interpretation of the output signal and relatively low power of operation. It is especially advantageous for studying materials such as Phase Change Materials (PCM) in which phase changes occur dynamically. This aspect is quite promising for characterizing emerging materials for integrated photonics applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn