Multifunctional Acetamide Additive Combined with LiNO3 Co-Assists Low-Concentration Electrolyte Interfacial Stability for Lithium Metal Batteries.

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览11
摘要
Lithium metal batteries (LMBs) are expected to upgrade their energy density to meet the growing battery market demand; however, intractable lithium dendrites and prominent electrode-electrolyte interface problems have been the stumbling block to their practical applications. Electrolytes play a crucial role in LMBs and are directly involved in the establishment of the electrode-electrolyte interface. In particular, low-concentration electrolytes (LCEs) can significantly save electrolyte costs, but the interface issue is more noteworthy. Here, multifunctional acetamide (N-methyl-N-(trimethylsilyl)-trifluoroacetamide, MTA) and lithium nitrate (LiNO3) additives were introduced together to enhance the performance of LMBs in LCEs. The MTA additive effectively removes the trace water and corrosive HF from the electrolyte, thus suppressing lithium salt decomposition and enhancing the stability of LCEs. Moreover, the MTA additive can construct an inorganic-rich interphase layer on the cathode/anode surface to protect the electrode. Especially, MTA can cooperate with LiNO3 additive to suppress lithium dendrites and reduce interfacial impedance, thus effectively enhancing lithium metal anode stability. Benefiting from the introduction of MTA and LiNO3 additives in the LCEs, the Li||NMC811 metal battery still has a capacity of 110 mA h g-1 after 500 cycles at room temperature, while the reference batteries have failed. The rate capacity and high temperature (50 °C) performance of the Li||NCM811 batteries have also been significantly improved. Significantly, this research explores a cost-effective method of using multifunctional additives to enhance LMBs' stability in LCEs.
更多
查看译文
关键词
acetamide additive,LiNO3,lithiummetal batteries,low-concentration electrolyte,interface stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn