Regularized Behavior Cloning for Blocking the Leakage of Past Action Information

NeurIPS 2023(2023)

引用 0|浏览33
摘要
For partially observable environments, imitation learning with observation histories (ILOH) assumes that control-relevant information is sufficiently captured in the observation histories for imitating the expert actions. In the offline setting wherethe agent is required to learn to imitate without interaction with the environment, behavior cloning (BC) has been shown to be a simple yet effective method for imitation learning. However, when the information about the actions executed in the past timesteps leaks into the observation histories, ILOH via BC often ends up imitating its own past actions. In this paper, we address this catastrophic failure by proposing a principled regularization for BC, which we name Past Action Leakage Regularization (PALR). The main idea behind our approach is to leverage the classical notion of conditional independence to mitigate the leakage. We compare different instances of our framework with natural choices of conditional independence metric and its estimator. The result of our comparison advocates the use of a particular kernel-based estimator for the conditional independence metric. We conduct an extensive set of experiments on benchmark datasets in order to assess the effectiveness of our regularization method. The experimental results show that our method significantly outperforms prior related approaches, highlighting its potential to successfully imitate expert actions when the past action information leaks into the observation histories.
更多
查看译文
关键词
Imitation learning,Information leakage,Causal Confusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn