MicrobeMod: A Computational Toolkit for Identifying Prokaryotic Methylation and Restriction-Modification with Nanopore Sequencing
biorxiv(2023)
摘要
Bacteria and archaea use restriction-modification (R-M) systems to distinguish self from foreign DNA by methylating their genomes with DNA methyltransferases with diverse sequence specificities, and these immunity systems often vary at the strain level. Identifying active methylation patterns and R-M systems can reveal barriers to the introduction of recombinant DNA or phage infection. Here, we present the computational MicrobeMod toolkit for identifying 5mC and 6mA methylation sequence motifs and R-M systems in bacterial genomes using nanopore sequencing of native DNA. We benchmark this approach on a set of reference E. coli strains expressing methyltransferases with known specificities. We then applied these analyses to 31 diverse bacterial and archaeal organisms to reveal the methylation patterns of strains with previously unexplored epigenetics, finding that prokaryotic 5-methylcytosine may be more common than previously reported. In summary, MicrobeMod can rapidly reveal new epigenetics within a prokaryotic genome sequenced with Oxford Nanopore R10.4.1 flow cells at sequencing depths as low as 10x and only requires native DNA. This toolkit can be used to advance fundamental knowledge of bacterial methylation and guide strategies to overcome R-M barriers of genetic tractability in non-model microbes.### Competing Interest StatementThe authors have declared no competing interest.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn