Flexible Ultrasonic Transducers for Wearable Biomedical Applications: A Review on Advanced Materials, Structural Designs, and Future Prospects.
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL(2024)
摘要
Due to the rapid developments in materials science and fabrication techniques, wearable devices have recently received increased attention for biomedical applications, particularly in medical ultrasound (US) imaging, sensing, and therapy. US is ubiquitous in biomedical applications because of its noninvasive nature, nonionic radiating, high precision, and real-time capabilities. While conventional US transducers are rigid and bulky, flexible transducers can be conformed to curved body areas for continuous sensing without restricting tissue movement or transducer shifting. This article comprehensively reviews the application of flexible US transducers in the field of biomedical imaging, sensing, and therapy. First, we review the background of flexible US transducers. Following that, we discuss advanced materials and fabrication techniques for flexible US transducers and their enabling technology status. Finally, we highlight and summarize some promising preliminary data with recent applications of flexible US transducers in biomedical imaging, sensing, and therapy. We also provide technical barriers, challenges, and future perspectives for further research and development.
更多查看译文
关键词
Transducers,Ultrasonic imaging,Biomedical imaging,Sensors,Acoustics,Piezoelectric materials,Biomedical monitoring,biomedical sensing,biomedical therapy,flexible electronics,flexible ultrasound,ultrasound transducers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn