Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control
arxiv(2023)
摘要
Free-electron lasers (FELs) are the world's most brilliant light sources with
rapidly evolving technological capabilities in terms of ultrabright and
ultrashort pulses over a large range of accessible photon energies. Their
revolutionary and innovative developments have opened new fields of science
regarding nonlinear light-matter interaction, the investigation of ultrafast
processes from specific observer sites, and approaches to imaging matter with
atomic resolution. A core aspect of FEL science is the study of isolated and
prototypical systems in the gas phase with the possibility of addressing
well-defined electronic transitions or particular atomic sites in molecules.
Notably for polarization-controlled short-wavelength FELs, the gas phase offers
new avenues for investigations of nonlinear and ultrafast phenomena in spin
orientated systems, for decoding the function of the chiral building blocks of
life as well as steering reactions and particle emission dynamics in otherwise
inaccessible ways. This roadmap comprises descriptions of technological
capabilities of facilities worldwide, innovative diagnostics and
instrumentation, as well as recent scientific highlights, novel methodology and
mathematical modeling. The experimental and theoretical landscape of using
polarization controllable FELs for dichroic light-matter interaction in the gas
phase will be discussed and comprehensively outlined to stimulate and
strengthen global collaborative efforts of all disciplines.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn