From OTFS to DD-ISAC: Integrating Sensing and Communications in the Delay Doppler Domain

IEEE WIRELESS COMMUNICATIONS(2024)

引用 0|浏览41
摘要
Next-generation vehicular networks are expected to provide the capability of robust environmental sensing in addition to reliable communications to meet intelligence requirements. A promising solution is the integrated sensing and communication (ISAC) technology, which performs both functionalities using the same spectrum and hardware resources. Most existing works on ISAC consider the Orthogonal Frequency Division Multiplexing (OFDM) waveform. Nevertheless, vehicle motion introduces Doppler shift, which breaks the subcarrier orthogonality and leads to performance degradation. The recently proposed Orthogonal Time Frequency Space (OTFS) modulation, which exploits various advantages of Delay Doppler (DD) channels, has been shown to support reliable communication in high-mobility scenarios. Moreover, the DD waveform can directly interact with radar sensing parameters, which are actually delay and Doppler shifts. This paper investigates the advantages of applying the DD communication waveform to ISAC. Specifically, we first provide a comprehensive overview of implementing DD communications, based on which several advantages of DD-ISAC over OFDM-based ISAC are revealed, including transceiver designs and the ambiguity function. Furthermore, a detailed performance comparison are presented, where the target detection probability and the mean squared error (MSE) performance are also studied. Finally, some challenges and opportunities of DD-ISAC are also provided.
更多
查看译文
关键词
Orthogonal Time Frequency Space Modulation,Doppler Radar,Multicarrier Transmission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn