Single-Model and Any-Modality for Video Object Tracking

Computer Vision and Pattern Recognition(2024)

引用 0|浏览32
摘要
In the realm of video object tracking, auxiliary modalities such as depth, thermal, or event data have emerged as valuable assets to complement the RGB trackers. In practice, most existing RGB trackers learn a single set of parameters to use them across datasets and applications. However, a similar single-model unification for multi-modality tracking presents several challenges. These challenges stem from the inherent heterogeneity of inputs – each with modality-specific representations, the scarcity of multi-modal datasets, and the absence of all the modalities at all times. In this work, we introduce Un-Track, a Unified Tracker of a single set of parameters for any modality. To handle any modality, our method learns their common latent space through low-rank factorization and reconstruction techniques. More importantly, we use only the RGB-X pairs to learn the common latent space. This unique shared representation seamlessly binds all modalities together, enabling effective unification and accommodating any missing modality, all within a single transformer-based architecture and without the need for modality-specific fine-tuning. Our Un-Track achieves +8.1 absolute F-score gain, on the DepthTrack dataset, by introducing only +2.14 (over 21.50) GFLOPs with +6.6M (over 93M) parameters, through a simple yet efficient prompting strategy. Extensive comparisons on five benchmark datasets with different modalities show that Un-Track surpasses both SOTA unified trackers and modality-specific finetuned counterparts, validating our effectiveness and practicality.
更多
查看译文
关键词
Video Object Tracking,Event Data,Latent Space,Extensive Comparison,Multimodal Dataset,Single Set Of Parameters,Single Architecture,Absolute Gain,Feature Space,Large-scale Datasets,Input Modalities,Implicit Learning,Low Illumination,Low-rank Approximation,Tracking Dataset,Gain In Precision,Representation Of Heterogeneity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn