A Truncated Test Scheme Design Method for Success-Failure In-Orbit Tests

RELIABILITY ENGINEERING & SYSTEM SAFETY(2024)

引用 0|浏览9
摘要
Based on the success-failure test feature of in-orbit tests (IOTs) for typical space equipment, this paper presents a method for designing a truncated test scheme for success-failure in-orbit tests. With this method, a small upper boundary of the sample size for the IOT verification test can be obtained before the test starts. The method introduces the truncated Bayes-sequential mesh test (SMT) method into the design of the IOT verification test scheme and greatly compresses the continuous test area by incorporating optimization theory, resulting in a smaller upper limit of the IOT sample size. First, this paper derives a specific calculation formula for the Bayes-SMT critical line. Second, the Markov chain model is adopted to calculate the occurrence probabilities of each acceptance and rejection point through state transition. Finally, an optimal truncated test optimization algorithm based on the augmented lagrangian genetic algorithm is proposed. Simulation tests show that, compared with the classical single sampling method, the truncated sequential probability ratio test method, the truncated SMT method, and the truncated Bayes-SMT method based on step-by-step calculation, the method presented in this paper can be used to obtain a sequential test scheme with smaller truncated sample size.
更多
查看译文
关键词
IOT verification test,Sequential test,Bayesian theory,Risk calculation,Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn