Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN).
CLINICAL CANCER RESEARCH(2024)
摘要
Abstract In recent years, there has been increased interest in incorporation of backfilling into dose-escalation clinical trials, which involves concurrently assigning patients to doses that have been previously cleared for safety by the dose-escalation design. Backfilling generates additional information on safety, tolerability, and preliminary activity on a range of doses below the maximum tolerated dose (MTD), which is relevant for selection of the recommended phase II dose and dose optimization. However, in practice, backfilling may not be rigorously defined in trial protocols and implemented consistently. Furthermore, backfilling designs require careful planning to minimize the probability of treating additional patients with potentially inactive agents (and/or subtherapeutic doses). In this paper, we propose a simple and principled approach to incorporate backfilling into the Bayesian optimal interval design (BOIN). The design integrates data from the dose-escalation and backfilling components of the design and ensures that the additional patients are treated at doses where some activity has been seen. Simulation studies demonstrated that the proposed backfilling BOIN design (BF-BOIN) generates additional data for future dose optimization, maintains the accuracy of the MTD identification, and improves patient safety without prolonging the trial duration.
更多查看译文
关键词
Pharmacokinetic/Pharmacodynamic Modeling,Phase I Trials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn