Influence of Vertical Hydrologic Exchange Flow, Channel Flow, and Biogeochemical Kinetics on CH4 Emissions from Rivers

WATER RESOURCES RESEARCH(2023)

引用 0|浏览24
摘要
CH4 emissions from inland water are highly uncertain in the current global CH4 budget, especially for rivers and streams due to sparse measurements and the uncertainty of measurements caused by turbulent water flow. A previous study has revealed that vertical hydrologic exchange flow (VHEF) is the main regulator of CH4 emissions from riverbed sediments. However, to what extent the understanding obtained from the plot-scale can be extended to the reach scale and basin scale remains unknown. To address this challenge, we developed a process-based model to estimate CH4 flux at the air-water interface using the attributes available in the national hydrography data set. It calculates the annual mean flux of VHEF, CH4 production in sediments, and CH4 transport in the river channel in a sequential manner. Model performance is evaluated by CH4 efflux observed at the Hanford reach of the Columbia River. We show that reach-wise sediment hydrologic and biogeochemical conditions estimated from the national hydrography data set could serve as a good indicator of CH4 emissions from rivers. Aerobic methane oxidation and export to the downstream are the dominant ways of total CH4 loss for the large lowland river. The hotspots of CH4 emissions are likely to be at the reaches with fine sediments and slow channel velocity. This study demonstrates the possibility of quantifying CH4 emissions at the reach scale and the modeling framework has the potential to be extended to the basin scale to improve estimates of CH4 emissions from lotic inland water.
更多
查看译文
关键词
surface water-groundwater interaction,hyporheic zone,biogeochemistry,riverine methane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn